https://www.selleckchem.com/products/cc-122.html
Our work focuses on unsupervised and generative methods that address the following goals (1) learning unsupervised generative representations that discover latent factors controlling image semantic attributes, (2) studying how this ability to control attributes formally relates to the issue of latent factor disentanglement, clarifying related but dissimilar concepts that had been confounded in the past, and (3) developing anomaly detection methods that leverage representations learned in the first goal. For goal 1, we propose a network a