https://www.selleckchem.com/products/Y-27632.html
To mitigate the pain of manually tuning hyperparameters of deep neural networks, automated machine learning (AutoML) methods have been developed to search for an optimal set of hyperparameters in large combinatorial search spaces. However, the search results of AutoML methods significantly depend on initial configurations, making it a non-trivial task to find a proper configuration. Therefore, human intervention via a visual analytic approach bears huge potential in this task. In response, we propose HyperTendril, a web-based visual ana