https://www.selleckchem.com/products/rp-6685.html
On these premises, we introduce an extension that outperforms conventional convolution on benchmark data. Quantitative experiments are provided on synthetic and benchmark data, showing that the direct encoding hit-or-miss transform provides better interpretability on learned shapes consistent with objects, whereas our morphologically inspired generalized convolution yields higher classification accuracy. Finally, qualitative hit and miss filter visualizations are provided relative to single morphological layer.We consider the problem of