https://www.selleckchem.com/products/gdc-0068.html
9 Pearson correlation). We then successfully predict microbial composition from environmental variables, such as plant age, temperature or precipitation (0.73 Pearson correlation, 0.42 Bray-Curtis). We extend this to predict microbiome composition under hypothetical scenarios, such as future climate change conditions. Finally, via transfer learning, we predict microbial composition in a distinct scenario with only 100 sequences, and distinct environmental features. We propose that our deep latent space may assist microbiome-engineering