https://www.selleckchem.com/CDK.html
The categorization of sleep stages helps to diagnose different sleep-related ailments. In this paper, an entropy-based information-theoretic approach is introduced for the automated categorization of sleep stages using multi-channel electroencephalogram (EEG) signals. This approach comprises of three stages. First, the decomposition of multi-channel EEG signals into sub-band signals or modes is performed using a novel multivariate projection-based fixed boundary empirical wavelet transform (MPFBEWT) filter bank. Second, entropy features such as bubb