https://www.selleckchem.com/pr....oducts/telacebec-q20
Automatic extraction of liver and tumor from CT volumes is a challenging task due to their heterogeneous and diffusive shapes. Recently, 2D deep convolutional neural networks have become popular in medical image segmentation tasks because of the utilization of large labeled datasets to learn hierarchical features. However, few studies investigate 3D networks for liver tumor segmentation. In this paper, we propose a 3D hybrid residual attention-aware segmentation method, i.e., RA-UNet, to precisely extract the liver region and seg