https://www.selleckchem.com/
In this study, we use the overnight blood oxygen saturation (SpO2) signal along with convolutional neural networks (CNN) for the automatic estimation of pediatric sleep apnea-hypopnea syndrome (SAHS) severity. The few preceding studies have focused on the application of conventional feature extraction methods to obtain information from the SpO2 signal, which may omit relevant data related to the illness. In contrast, deep learning techniques are able to automatically learn features from raw input signal. Thus, we propose to assess whether CNN, a deep learni