https://www.selleckchem.com/products/azd6738.html
Spatiotemporal dynamics of EEG/MEG (electro-/magneto-encephalogram) have typically been investigated by applying time-frequency decomposition and examining amplitude-amplitude, phase-phase, or phase-amplitude associations between combinations of frequency bands and scalp sites, primarily to identify neural correlates of behaviors and traits. Instead, we directly extracted global EEG spatiotemporal dynamics as trajectories of k-dimensional state vectors (k = the number of estimated current sources) to investigate potential global rules g