https://www.selleckchem.com/products/ti17.html
606, 0.608 without lag and 1-day lag respectively on ARI patients and R2 = 0.872, 0.871 without lag and 1-day lag respectively on total patients. All eight models did not perform well with the lag effect on the ARI patient dataset but performed better on the total patient dataset. Thus, the study did not find any significant association between ARI patients and ambient air pollution due to the intermittent availability of data during the COVID-19 period. This study gives insight into developing machine learning programs for risk prediction