https://www.selleckchem.com/products/mln-4924.html
We found that taste aversive memory formation can induce an increase in GAP-43 in the granular layer of the GC. Furthermore, we also found an increase in SYN expression in both layers of the GC, the basolateral amygdala (BLA) and the central amygdala (CeA). These results suggest that aversive memory representation induces a new circuitry (inferred from an increase in GAP 43). On the other hand, an appetitive taste learning increased SYN expression in the GC (both layers), the BLA and the CeA without any changes in GAP 43. Together thes