https://www.selleckchem.com/products/msab.html
The emergence of the plasmid-mediated high-level tigecycline resistance mechanism Tet(X) threatens the role of tigecycline as the "last-resort" antibiotic in the treatment of infections caused by carbapenem-resistant Gram-negative bacteria. Compared with that of the prototypical Tet(X), the enzymatic activities of Tet(X3) and Tet(X4) were significantly enhanced, correlating with high-level tigecycline resistance, but the underlying mechanisms remain unclear. In this study, we probed the key amino acid changes leading to the enhancement of