https://www.selleckchem.com/products/lly-283.html
In this article, a combination of non-destructive NIR spectroscopy and machine learning techniques was applied to predict the texture parameters and the total soluble solids content (TSS) in intact berries. The multivariate models obtained by building artificial neural networks (ANNs) and applying partial least squares (PLS) regressions showed a better prediction ability after the elimination of uninformative spectral ranges. A very good prediction was obtained for TSS and springiness (R2 0.82 and 0.72). Qualitative models were obtained