https://www.selleckchem.com/products/td139.html
3D radiomic features showed better ICCs compared with 2D in both intra- (P 0.001) and inter-observer (P 0.001) analysis. 3D radiomic model based on selected features developed from a balanced training dataset presented a favorable predictive performance with AUC of 0.786 and 0.768 in the training and test sets, respectively. The predictive performance of 3D model was superior to 2D model (1 feature) both in the training (AUC 0.786 vs. 0.683, P = 0.036) and the test (AUC 0.768 vs.0.652, P = 0.441) set. The calibration curve and