https://www.selleckchem.com/pr....oducts/sp-600125.htm
Phosphorylation is among the most widely distributed mechanisms regulating the tunable structure and function of proteins in response to neuronal, hormonal and environmental signals. We demonstrate here that the low-voltage electrochemical reduction of histidine residues in reflectin A1, a protein that mediates the neuronal fine-tuning of colour reflected from skin cells for camouflage and communication in squids, acts as an in vitro surrogate for phosphorylation in vivo, driving the assembly previously shown to regulate its function.