https://www.selleckchem.com/pr....oducts/hydroxy-cinna
Network data are often explained by assuming a generating mechanism and estimating related parameters. Without a way to test the relevance of assumed mechanisms, conclusions from such models may be misleading. Here we introduce a simple empirical approach to mechanistically classify arbitrary network data as originating from any of a set of candidate mechanisms or none of them. We tested our approach on simulated data from five of the most widely studied network mechanisms, and found it to be highly accurate. We then teste