https://www.selleckchem.com/products/umi-77.html
Estimating the composition of construction waste is crucial to the efficient operation of various waste management facilities, such as landfills, public fills, and sorting plants. However, this estimating task is often challenged by the desire of quickness and accuracy in real-life scenarios. By harnessing a valuable data set in Hong Kong, this research develops a big data-probability (BD-P) model to estimate construction waste composition based on bulk density. Using a saturated data set of 4.27 million truckloads of construction waste,