https://www.selleckchem.com/products/sel120.html
Genitourinary rhabdomyosarcoma (GU-RMS) is a rare, pediatric malignancy originating from embryonic mesenchyme. Current approaches to prognostication rely upon conventional statistical methods such as Cox proportional hazards (CPH) models and have suboptimal predictive ability. Given the success of deep learning approaches in other specialties, we sought to develop and compare deep learning models with CPH models for the prediction of 5-year survival in pediatric GU-RMS patients. Patients less than 20 years of age with GU-RMS were identif